Vertical Lift Systems

- 14.37

254 VEX Talk: Episode 3 - Lift Systems - YouTube
photo src: www.youtube.com

The Rolls-Royce LiftSystem, together with the F135 engine, is an aircraft propulsion system designed for use in the STOVL variant of the F-35 Lightning II. The complete system, known as the Integrated Lift Fan Propulsion System (ILFPS), was awarded the Collier Trophy in 2001.


Vertical Storage Systems - Vertical Lift Modules
photo src: www.mmci-systems.com


Maps, Directions, and Place Reviews



Requirement

The F-35B STOVL variant of the Joint Strike Fighter (JSF) aircraft is intended to replace the vertical flight Harrier, which was the world's first operational short-takeoff / vertical-landing fighter. A requirement of the JSF is that it can attain supersonic flight, and a suitable vertical lift system that would not compromise this capability was needed for the STOVL variant. The solution came in the form of the Rolls-Royce LiftSystem, developed through a $1.3 billion System Development and Demonstration (SDD) contract from Pratt & Whitney. This requirement was met on 20 July 2001.


Vertical Lift Systems Video



Design and development

Instead of using lift engines or rotating nozzles on the engine fan like the Harrier, the "LiftSystem" has a shaft-driven LiftFan, designed by Lockheed Martin and developed by Rolls-Royce, and a thrust vectoring nozzle for the engine exhaust that provides lift and can also withstand the use of afterburners in conventional flight to achieve supersonic speeds. The system has more similarities to the Russian Yakovlev Yak-141 and German EWR VJ 101D/E than the preceding generation of STOVL designs to which the Harrier belongs.

The team responsible for developing the propulsion system includes Lockheed Martin, Northrop Grumman, BAE Systems, Pratt & Whitney and Rolls-Royce, under the leadership of the United States Department of Defense Joint Strike Fighter Program Office. Paul Bevilaqua, Chief Engineer of Lockheed Martin Advanced Development Projects (Skunk Works), invented the lift fan propulsion system. The concept of a shaft-driven lift-fan dates back to the mid-1950s. The lift fan was demonstrated by the Allison Engine Company in 1995-97.

The U.S. Department of Defense (DOD) awarded General Electric and Rolls-Royce a $2.1 billion contract to jointly develop the F136 engine as an alternative to the F-135. The LiftSystem was designed to be used with either engine. Following termination of government funding GE and Rolls-Royce terminated further development of the engine in 2011.

Rolls-Royce is managing the overall development and integration programme from its site in Bristol, UK, which is also responsible for the LiftFan turbomachinery, 3BSM and Roll Post designs. The team in Indianapolis, US, will provide the system's gearbox, clutch, driveshaft and nozzle and will conduct the build and verification testing of the LiftFan.

Operation

The Rolls-Royce LiftSystem comprises four major components:

  • LiftFan
  • Engine to fan driveshaft
  • Three-bearing swivel module (3BSM)
  • Roll posts (two)

The three-bearing swivel module (3BSM) is a thrust vectoring nozzle at the tail of the aircraft which allows the main turbofan cruise engine exhaust to pass either straight through with reheat capability for forward propulsion in conventional flight, or to be deflected downward to provide aft vertical lift.

In "lift" mode for assisted vertical maneuvers, 29,000 hp is diverted forward through a driveshaft from the engine's low-pressure (LP) turbine via a clutch and bevel-gearbox to a vertically mounted, contra-rotating lift fan located forward of the main engine. The fan efflux (low-velocity unheated air) discharges through a thrust vectoring nozzle on the underside of the aircraft, thus balancing the aft lift generated by the 3BSM. For lateral stability and roll control, bypass air from the engine goes out through a roll-post nozzle in each wing. For pitch control, the areas of exhaust nozzle and LiftFan inlet are varied conversely to change the balance between them while maintaining their sum, and with constant turbine speed. Yaw control is achieved by yawing the 3BSM. Forward, and even backward, motion is controlled by tilting the 3BSM and LiftFan outlet.

The following indicates the component thrust values of the system in lift mode:

In comparison, the maximum thrust of the Rolls-Royce Pegasus 11-61/F402-RR-408, the most powerful version which is used in the AV-8B, is 23,800 pounds-force (106 kN). The weight of the AV-8B is about 46% of the weight of the F-35B.

Like lift engines, the added LiftSystem components are dead weight during flight, but the advantage of employing the LiftSystem is that its greater lift thrust increases takeoff payload by an even larger amount.

Engineering challenges

While developing the LiftSystem many engineering difficulties had to be overcome, and new technologies exploited.

The LiftFan utilises hollow-bladed titanium blisks (a bladed disk or "blisk" achieved by super-plastic forming of the blades and linear friction welding to the blisk hub). Organic matrix composites are used for the interstage vanes. The LiftFan must safely function at flight speeds up to 250 knots (130 m/s) This condition appears as a crosswind to the horizontal intake and occurs when the aircraft transitions between forward flight and hover.

The clutch mechanism uses dry plate carbon-carbon technology originally derived from aircraft brakes. Friction is only used to engage the lift fan at low engine speeds. A mechanical lock-up is engaged before increasing to full power.

The gearbox has to be able to operate with interruptions to its oil supply of up to a minute while transferring full power through 90 degrees to the LiftFan.

The Three-Bearing Swivel Module has to both support the final hot thrust vectoring nozzle and transmit its thrust loads back to the engine mounts. The "fueldraulic" actuators for the 3BSM use fuel pressurised to 3,500 lbf/in2, rather than hydraulic fluid, to reduce weight and complexity. One actuator travels with the swivel nozzle, moving through 95 degrees while subject to intense heat and vibration.

Testing

During concept definition of the Joint Strike Fighter, two Lockheed airframes were flight-tested: the Lockheed X-35A (which was later converted into the X-35B), and the larger-winged X-35C, with the STOVL variant incorporating the Rolls-Royce LiftFan module.

LiftSystem flight testing commenced in June 2001, and on 20 July that year the X-35B became the first aircraft in history to perform a short takeoff, a level supersonic dash and vertical landing in a single flight. By the time testing had been completed in August, the aircraft had achieved 17 vertical takeoffs, 14 short takeoffs, 27 vertical landings and five supersonic flights. During the final qualifying Joint Strike Fighter flight trials, the X-35B took off in less than 500 feet (150 m), transitioned to supersonic flight, then landed vertically.

Ground tests of the F136/LiftSystem combination were carried out at the General Electric facility in Peebles, Ohio in July 2008. On 18 March 2010, a STOVL equipped F-35B performed a vertical hover and landing demonstration at Patuxent River Naval Air Station in Lexington Park, MD.

Collier Trophy award

In 2001, the LiftSystem propulsion system was awarded the prestigious Collier Trophy, in recognition of "the greatest achievement in aeronautics or astronautics in America", specifically for "improving the performance, efficiency and safety of air or space vehicles, the value of which has been thoroughly demonstrated by actual use during the preceding year."


Cord-driven roller conveyors, system Q67 for light items - Q-System
photo src: www.q-system.com


Specifications (LiftSystem)

Components:

Source of the article : Wikipedia



EmoticonEmoticon

 

Start typing and press Enter to search